Marginalized Count Kernel on HMM
Marginalized Kernel
KM(x,x′)=Eh[ϕ(x,h)]T⋅Eh′[ϕ(x′,h′)] =ϕM(x)T⋅ϕM(x′)
HMM as a log linear model
logp(x,h|A,E)=T∑t=1logaht,ht−1+T∑t=1logext,ht=m∑i=1m∑j=1Nai,j(h)logai,j+m∑i=1D∑d=1Nei,d(x,h)logei,d
where
Nai,j(h) : the number of times i to j transition occured
Nei,d(x,h) : the number of times d was emitted from state i
Marginalized Count Kernel on HMM
Count feature on HMM
ϕ(x,h)={Na,Ne}
Joint Count Kernel on HMM
KJ((x,h),(x′,h′))={Na,Ne}T⋅{N′a,N′e}
Marginalized Count Kernel on HMM
KM(x,x′)=Eh[{Na,Ne}]T⋅Eh′[{N′a,N′e}]
Calculation by forward-backward algorithm
Eh[Nai,j]=1p(x|θ)T∑t=1ft−1,iai,jej,xtbt,jEh[Nei,d]=1p(x|θ)T∑t∈{xt=d}ft,ibt,i
演習問題
HMMのforward-backwardアルゴリズムを実装して、
(1) Baum-Welchアルゴリズムによるパラメータ学習を行うプログラムを作れ
(2) 2本の配列に対するmarginalized count kernelを求めるプログラムを作れ