Marginalized Count Kernel on HMM

Marginalized Kernel

KM(x,x)=Eh[ϕ(x,h)]TEh[ϕ(x,h)] =ϕM(x)TϕM(x)

HMM as a log linear model

logp(x,h|A,E)=Tt=1logaht,ht1+Tt=1logext,ht=mi=1mj=1Nai,j(h)logai,j+mi=1Dd=1Nei,d(x,h)logei,d


where
Nai,j(h) : the number of times i to j transition occured 

Nei,d(x,h) : the number of times d was emitted from state i

Marginalized Count Kernel on HMM

Count feature on HMM

ϕ(x,h)={Na,Ne}

Joint Count Kernel on HMM

KJ((x,h),(x,h))={Na,Ne}T{Na,Ne}

Marginalized Count Kernel on HMM

KM(x,x)=Eh[{Na,Ne}]TEh[{Na,Ne}]

Calculation by forward-backward algorithm

Eh[Nai,j]=1p(x|θ)Tt=1ft1,iai,jej,xtbt,jEh[Nei,d]=1p(x|θ)Tt{xt=d}ft,ibt,i

演習問題

HMMのforward-backwardアルゴリズムを実装して、
(1) Baum-Welchアルゴリズムによるパラメータ学習を行うプログラムを作れ
(2) 2本の配列に対するmarginalized count kernelを求めるプログラムを作れ